在现代机器学习研究中,概括到以前看不见的任务的能力几乎是一个关键的挑战。它也是未来“将军AI”的基石。任何部署在现实世界应用中的人为智能代理,都必须随时适应未知环境。研究人员通常依靠强化和模仿学习来通过试用和错误学习来在线适应新任务。但是,这对于需要许多时间段或大量子任务才能完成的复杂任务可能具有挑战性。这些“长范围”任务遭受了样本效率低下的损失,并且可能需要非常长的培训时间,然后代理人才能学习执行必要的长期计划。在这项工作中,我们介绍了案例,该案例试图通过使用自适应“不久的将来”子目标训练模仿学习代理来解决这些问题。这些子观念在每个步骤中使用构图算术在学习潜在的表示空间中进行重新计算。除了提高标准长期任务的学习效率外,这种方法还可以使对以前看不见的任务进行一次性的概括,只有在不同环境中为该任务进行单个参考轨迹。我们的实验表明,所提出的方法始终优于先前的最新成分模仿学习方法30%。
translated by 谷歌翻译
在这项工作中,我们介绍了一种新的观点,用于在多任务模仿学习中学习可转移的内容。人类能够转移技能和知识。如果我们可以骑自行车工作并开车去商店,我们还可以骑自行车去商店并开车去上班。我们从中汲取灵感,假设策略网络的潜在记忆可以分为两个分区。这些要么包含有关任务的环境环境的知识,要么包含解决任务所需的可推广技能。这可以提高培训效率,并更好地概括相同环境中的技能和在看不见的环境中的同一任务。我们使用了建议的方法来训练两个不同的多任务IL环境的分解代理。在这两种情况下,我们的任务成功率都超过了SOTA的30%。我们还向真正的机器人进行导航证明了这一点。
translated by 谷歌翻译
Denoising Diffusion Probabilistic Models (DDPMs) are emerging in text-to-speech (TTS) synthesis because of their strong capability of generating high-fidelity samples. However, their iterative refinement process in high-dimensional data space results in slow inference speed, which restricts their application in real-time systems. Previous works have explored speeding up by minimizing the number of inference steps but at the cost of sample quality. In this work, to improve the inference speed for DDPM-based TTS model while achieving high sample quality, we propose ResGrad, a lightweight diffusion model which learns to refine the output spectrogram of an existing TTS model (e.g., FastSpeech 2) by predicting the residual between the model output and the corresponding ground-truth speech. ResGrad has several advantages: 1) Compare with other acceleration methods for DDPM which need to synthesize speech from scratch, ResGrad reduces the complexity of task by changing the generation target from ground-truth mel-spectrogram to the residual, resulting into a more lightweight model and thus a smaller real-time factor. 2) ResGrad is employed in the inference process of the existing TTS model in a plug-and-play way, without re-training this model. We verify ResGrad on the single-speaker dataset LJSpeech and two more challenging datasets with multiple speakers (LibriTTS) and high sampling rate (VCTK). Experimental results show that in comparison with other speed-up methods of DDPMs: 1) ResGrad achieves better sample quality with the same inference speed measured by real-time factor; 2) with similar speech quality, ResGrad synthesizes speech faster than baseline methods by more than 10 times. Audio samples are available at https://resgrad1.github.io/.
translated by 谷歌翻译
Benefiting from its single-photon sensitivity, single-photon avalanche diode (SPAD) array has been widely applied in various fields such as fluorescence lifetime imaging and quantum computing. However, large-scale high-fidelity single-photon imaging remains a big challenge, due to the complex hardware manufacture craft and heavy noise disturbance of SPAD arrays. In this work, we introduce deep learning into SPAD, enabling super-resolution single-photon imaging over an order of magnitude, with significant enhancement of bit depth and imaging quality. We first studied the complex photon flow model of SPAD electronics to accurately characterize multiple physical noise sources, and collected a real SPAD image dataset (64 $\times$ 32 pixels, 90 scenes, 10 different bit depth, 3 different illumination flux, 2790 images in total) to calibrate noise model parameters. With this real-world physical noise model, we for the first time synthesized a large-scale realistic single-photon image dataset (image pairs of 5 different resolutions with maximum megapixels, 17250 scenes, 10 different bit depth, 3 different illumination flux, 2.6 million images in total) for subsequent network training. To tackle the severe super-resolution challenge of SPAD inputs with low bit depth, low resolution, and heavy noise, we further built a deep transformer network with a content-adaptive self-attention mechanism and gated fusion modules, which can dig global contextual features to remove multi-source noise and extract full-frequency details. We applied the technique on a series of experiments including macroscopic and microscopic imaging, microfluidic inspection, and Fourier ptychography. The experiments validate the technique's state-of-the-art super-resolution SPAD imaging performance, with more than 5 dB superiority on PSNR compared to the existing methods.
translated by 谷歌翻译
Diffusion models have achieved state-of-the-art synthesis quality on visual and audio tasks, and recent works adapt them to textual data by diffusing on the embedding space. But the difference between the continuous data space and the embedding space raises challenges to the diffusion model, which have not been carefully explored. In this paper, we conduct systematic studies and analyze the challenges threefold. Firstly, the data distribution is learnable for embeddings, which may lead to the collapse of the loss function. Secondly, as the norm of embedding varies between popular and rare words, adding the same noise scale will lead to sub-optimal results. In addition, we find that noises sampled from a standard Gaussian distribution may distract the diffusion process. To solve the above challenges, we propose Difformer, a denoising diffusion probabilistic model based on Transformer, which consists of three techniques including utilizing an anchor loss function, a layer normalization module for embeddings, and a norm factor to the Gaussian noise. All techniques are complementary to each other and critical to boosting the model performance together. Experiments are conducted on benchmark datasets over two seminal text generation tasks including machine translation and text summarization. The results show that Difformer significantly outperforms the embedding diffusion baselines, while achieving competitive results with strong autoregressive baselines.
translated by 谷歌翻译
While mislabeled or ambiguously-labeled samples in the training set could negatively affect the performance of deep models, diagnosing the dataset and identifying mislabeled samples helps to improve the generalization power. Training dynamics, i.e., the traces left by iterations of optimization algorithms, have recently been proved to be effective to localize mislabeled samples with hand-crafted features. In this paper, beyond manually designed features, we introduce a novel learning-based solution, leveraging a noise detector, instanced by an LSTM network, which learns to predict whether a sample was mislabeled using the raw training dynamics as input. Specifically, the proposed method trains the noise detector in a supervised manner using the dataset with synthesized label noises and can adapt to various datasets (either naturally or synthesized label-noised) without retraining. We conduct extensive experiments to evaluate the proposed method. We train the noise detector based on the synthesized label-noised CIFAR dataset and test such noise detector on Tiny ImageNet, CUB-200, Caltech-256, WebVision and Clothing1M. Results show that the proposed method precisely detects mislabeled samples on various datasets without further adaptation, and outperforms state-of-the-art methods. Besides, more experiments demonstrate that the mislabel identification can guide a label correction, namely data debugging, providing orthogonal improvements of algorithm-centric state-of-the-art techniques from the data aspect.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Massively multi-task learning with large language models has recently made substantial progress on few-shot generalization. However, this is usually performed in a centralized learning fashion, ignoring the privacy sensitivity issue of (annotated) data used in multiple tasks. To mitigate this issue, we propose FewFedWeight, a few-shot federated learning framework across multiple tasks, to achieve the best of both worlds: privacy preservation and cross-task generalization. FewFedWeight trains client models in isolated devices without sharing data. It broadcasts the global model in the server to each client and produces pseudo data for clients so that knowledge from the global model can be explored to enhance few-shot learning of each client model. An energy-based algorithm is further proposed to weight pseudo samples in order to reduce the negative impact of noise from the generated pseudo data. Adaptive model weights of client models are also tuned according to their performance. We use these model weights to dynamically aggregate client models to update the global model. Experiments on 118 NLP tasks show that FewFedWeight can significantly improve the performance of client models on 61% tasks with an average performance improvement rate of 30.5% over the baseline and substantially outperform FedAvg and other decentralized learning methods.
translated by 谷歌翻译
Knowledge distillation (KD) has been widely used for model compression and knowledge transfer. Typically, a big teacher model trained on sufficient data transfers knowledge to a small student model. However, despite the success of KD, little effort has been made to study whether KD leaks the training data of the teacher model. In this paper, we experimentally reveal that KD suffers from the risk of privacy leakage. To alleviate this issue, we propose a novel knowledge distillation method, swing distillation, which can effectively protect the private information of the teacher model from flowing to the student model. In our framework, the temperature coefficient is dynamically and adaptively adjusted according to the degree of private information contained in the data, rather than a predefined constant hyperparameter. It assigns different temperatures to tokens according to the likelihood that a token in a position contains private information. In addition, we inject noise into soft targets provided to the student model, in order to avoid unshielded knowledge transfer. Experiments on multiple datasets and tasks demonstrate that the proposed swing distillation can significantly reduce (by over 80% in terms of canary exposure) the risk of privacy leakage in comparison to KD with competitive or better performance. Furthermore, swing distillation is robust against the increasing privacy budget.
translated by 谷歌翻译
In this paper, we consider the inventory management (IM) problem where we need to make replenishment decisions for a large number of stock keeping units (SKUs) to balance their supply and demand. In our setting, the constraint on the shared resources (such as the inventory capacity) couples the otherwise independent control for each SKU. We formulate the problem with this structure as Shared-Resource Stochastic Game (SRSG)and propose an efficient algorithm called Context-aware Decentralized PPO (CD-PPO). Through extensive experiments, we demonstrate that CD-PPO can accelerate the learning procedure compared with standard MARL algorithms.
translated by 谷歌翻译